
Decidable Fragments of Many-Sorted Logic

Aharon Abadi

IBM Haifa Research Lab
Haifa University Campus, Haifa, 31905 Israel

Alexander Rabinovich

The Blavatnik School of Computer Science,
Tel-Aviv University, Israel

Mooly Sagiv

The Blavatnik School of Computer Science,
Tel-Aviv University, Israel

Abstract

Many natural specifications use types. We investigate the decidability of fragments of many-sorted first-
order logic. We identified some decidable fragments and illustrated their usefulness by formalizing specifi-
cations considered in the literature. Often the intended interpretations of specifications are finite. We prove
that the formulas in these fragments are valid iff they are valid over the finite structures. We extend these
results to logics that allow a restricted form of transitive closure.

We tried to extend the classical classification of the quantifier prefixes into decidable/undecidable classes
to the many sorted logic. However, our results indicate that a naive extension fails and more subtle classifi-
cation is needed.

Key words: decidable logic, many-sorted logic, the classical decision problem, verification, transitive
closure.

? An extended abstract of this paper was published in [1].
Email addresses: aharona@il.ibm.com (Aharon Abadi), rabinoa@post.tau.ac.il (Alexander

Rabinovich), msagiv@post.tau.ac.il (Mooly Sagiv).

Preprint submitted to Elsevier 1 April 2009

1. Introduction

Systems with unbounded resources such as dynamically allocated objects and threads are
heavily used in data structure implementations, web servers, and other areas. This paper develops
new methods for proving properties of such systems. Our method is based on two principles: (i)
formalizing the system and the required properties in fragments of many-sorted first-order logic
and (ii) developing algorithms that decide whether a formula in these fragments holds over the
finite models. Deciding whether a formula holds over the finite models is actually harder than
deciding whether a formula is valid (holds over all models).

This paper was inspired by the Alloy Analyzer - a tool for analyzing models written in Alloy, a
simple structural modeling language based on first-order logic [11, 12]. We illustrate the useful-
ness of our method by formalizing examples from Alloy. However, our results are more generally
applicable and can be used to prove obligations obtained by translation into many-sorted logic
from other specification and modeling languages.

1.1. Main Results

The main results in this paper are decidable fragments of many-sorted first-order logic. Our
methods can generate finite counter-examples and finite models satisfying a given specification,
which is hard for a resolution-based theorem prover. The rest of this subsection elaborates on
these results.

1.2. Adding Types

We are looking for decidable and expressive fragments of first-order-logic. Many natural spec-
ifications use types. Hence, we consider fragments of many-sorted first-order-logic. In this paper
we consider only cases where the interpretation of sorts (types) are disjoint.

The problem of classifying fragments of first-order logic with respect to the decidability and
complexity of the satisfiability problem has long been a major topic in the study of classical
logic. E. Borger et al. [6] provide the complete classification of fragments with a decidable va-
lidity problem and fragments with the finite model property. This classification is based on the
quantifier prefixes and vocabulary of the formulas. However, this classification deals only with
one-sorted logics and usually does not apply to specifications of practical problems, many of
which are many-sorted.

For example, the finite model property fails for formulas with the quantifier prefix ∀∀∃ and
equality [9]. Information about sorts (types) can reduce the complexity of this prefix class. For
example, consider the formula ∀x, y : A ∃z : B ψ(x, y, z), where ψ is a quantifier-free formula
with equality and without function symbols. Each model M of the formula contains a sub-model
M ′ that satisfies the formula and has only two elements. Indeed, letM be a model of the formula;
we can pick two arbitrary elements a1εA

M , b1εB
M such thatM |= ψ(a1, a1, b1), and defineM ′

to be M restricted to the universe {a1, b1}. Hence, many-sorted sentences with the quantifier
prefix ∀x : A∀y : A∃z : B have the finite-model property. Usually, as in the above example, the
inclusion of sorts simplifies the verification task.

2

1.3. Our Contribution

The main technical contribution of this paper is the identification of a fragment of many-
sorted logic that is (1) decidable; (2) useful - can formalize many examples; and (3) has the
finite counter-model property. The finite counter-model property guarantees that a formula has a
counter-model iff it has a finite counter-model, or equivalently, a formula is valid iff it is valid
over the finite models.

Our second contribution is an attempt to classify decidable prefix classes of many-sorted logic.
We show that a naive extension of one-sorted prefix classes to a many-sorted case inherits neither
decidability nor the finite model property.

We extended our results to a logic that allows restricted use of the transitive closure.
The rest of this paper is organized as follows. In Section 2, we describe three fragments

of many-sorted logic and formalize some Alloy examples using formulas in these fragments.
In Section 3, we prove that the validity over the finite models problems are decidable for our
fragments. In Section 4, we investigate ways of generalizing classification of decidable fragments
from first-order logic to many-sorted logic. In Section 5, we discuss related works. Section 6
contains our conclusions.

2. Three Fragments of Many-Sorted First-Order Logic

The task of verifying that a program P satisfies a property θ can be reduced to the validity
problem for sentences of the form ψ ⇒ θ, where the sentence ψ formalizes the behavior of P .

We introduce three fragments St0,St1 and St2 of many-sorted logic to describe the behavior
of programs and systems. Safety properties of programs/systems can usually be formalized by
universal sentences. We show that the validity and validity over the finite models problems are
decidable for formulas of the form ψ ⇒ θ, where ψ ∈ St i (i = 0, 1, 2) and θ is universal.
This allows automatic verification that a given program/system satisfies a property expressed as
a universal formula.

St0 is a natural fragment of the universal formulas that have the following finite model prop-
erty: if ψ ∈ St0, then it has a model iff it has a finite model.

St0 has an even stronger satisfiability with a finite extension property that we introduce in
Section 3. This property implies that the validity problem over the finite models is decidable for
the sentences of the form ψ ⇒ θ, where ψ ∈ St0 and θ is universal. In Section 2.3, we formalize
a birthday book example [16] in St0.

Motivated by examples from Alloy, in Section 2.1 we introduce a more expressive (though
less natural) set of formulas St1. The St1 formulas also have the satisfiability with a finite ex-
tension property, and might therefore be suitable for automatic verification of safety properties.
The behavior of many specifications from [11, 12] can be formalized in St1. We also describe
the Railway safety example, which cannot be formalized in St1. Our attempts to formalize the
Railway safety example led us to a fragment St2, which is defined in Section 2.4. This fragment
has the satisfiability with a finite extension property. Almost all the specifications from Alloy
that we examined and that do not use the transitive closure can be formalized by formulas of the
form ψ ⇒ θ, where ψ ∈ St2 and θ is universal.

3

2.1. St0 Class

In this subsection we describe a simple class of formulas denoted as St0.

Definition 1 (Stratified Vocabulary). A vocabulary Σ for many-sorted logic is stratified if there
is a function level from sorts (types) into Nat such that for every function symbol f : A1× . . .×
Am → B, level(B) < level(Ai) for all i = 1, . . . ,m.

It is clear that for a finite stratified vocabulary Σ and a finite set V of variables, there are only
a finite number of terms over Σ with the variables in V .

2.1.1. St0 Syntax

The formulas in St0 are universal formulas, over a stratified vocabulary.

It is easy to show that St0 has the finite model property, due to the finiteness of the Herbrand
model over St0 vocabulary. We extend this class to the class St1.

2.2. St1 Class

St1 is an extension of St0 with a restricted use of the new atomic formula x ∈ Im[f], where
f is a function symbol. The formula x ∈ Im[f] is shorthand for ∃y1 : A1 . . .∃yn : An (x =
f(y1, . . . , yn)).

This is formalized below.

2.2.1. St1 Vocabulary

St1 vocabulary contains predicates, function symbols, the equality symbol, and the atomic
formula x ∈ Im[f], where f is a function symbol.

2.2.2. St1 Syntax

The formulas in St1 are universal formulas, over a stratified vocabulary, and for every func-
tion symbol f : A1 × . . . × An → B that participates in a subformula xεIm[f], f is the only
function symbol in the vocabulary with the range B.

The semantics is the same as for many-sorted logic. For the new atomic formula, the semantics
is as for the formula ∃y1 : A1 . . .∃yn : An (x = f(y1, . . . , yn)).

In Section 3, we prove that St1 has satisfiability with a finite extension property that general-
izes the finite model property.

The requirement that f is the only function with range B is essential. For example, consider
the conjunction of the following formulas containing two functions:
g is onto: ∀y : T ′ y ∈ Im[g]
f is not onto: ∀x : T g(a) 6= f(x)
f is one-to-one: ∀x1, x2 : T f(x1) = f(x2) ⇒ x1 = x2

It is clear that this formula has only infinite models.

4

2.3. Examples

Most of our examples come from Alloy [11, 12]. The vast majority of Alloy examples in-
clude transitive closure and thus cannot be formalized in our logic 1 . We examined eight Alloy
specifications without transitive closure and seven of them can be formalized in our logics. Our
first example is the birthday book [16], which can be formalized in St0. The second example is
a Railway Safety specification, which cannot be formalized by formulas in St1. However, it can
be formalized in St2, which is an extension of St1; the fragment St2 is described in Section 2.4.

The Alloy specifications are composed of three parts: (1) Facts, (2) Formulas and (3) Assert.
Facts is a set of many-sorted formulas that describe intended models and constrain the values of
the functions and relations. Formulas is a set of parameterizable formulas intended to be used as
abbreviations (macros) in other parts. Assert is a set of many-sorted formulas that formalize prop-
erties. The verification task is to check whether the formulas in Assert are logical consequences
of the formulas from Facts.

Some specifications do not contain Assert part. For such a specification we want to check
whether the specification is consistent, i.e., whether the set of formulas in Facts is satisfiable.

2.3.1. Birthday Book
Table 1 is used to model a simple Birthday book program 2 [16]. A birthday book has two

relations: known, is a mapping between birthday book to people who are known by this birthday
book, and date, set of triples (birthday book, the person, and the birth date of this person).
The operation getDate gets the birth date for a given birthday book and person. The operation
AddBirthday adds an association between a name and a date. The constant b1 represents the
current book, b2 represents a new book obtained from b1 by adding to it the new elements p1 and
d1. The assertion Assert states that if you add an entry (p1, d1) to book b1 and then look it up
(at the new book b2), you get back what you just entered.

The specification assertion has the form ψ ⇒ θ, where ψ is in St0 and θ is universal.
The specification contains only one function getDate : BirthdayBook×Person→ Date.

We can define level as follows: level(BirthdayBook) = 1, level(Person) = 1 and level(Date) = 0.

2.3.2. Railway Safety Example
This example analyzes a policy for controlling the motion of trains in a railway system. Gates

are placed on track segments to prevent trains from colliding. We need a criterion to determine
when gates should be closed. There are many formalizations of the railway crossing problem;
some of them consider discrete time; others, consider continuous time. Our formulation is from
Alloy [11, 12] and it uses a discrete time.

The type Movers and the relation moving represent sets of moving trains. Some of the relation
and function symbols have the suffix current or next to represent an interpretation for the cur-
rent and next periods. For example, instead of P (t) ⇒ P (t+ 1) we write P current ⇒ P next.
Here P (t) ⇒ P (t+1) means that if P holds at time t then P holds at time t+1 and P current ⇒
P next means that if P holds at current time then P holds at next time.

Tables 2 and 3 contain the specification of the train example.
Formulas Description.

1 In Section 3.5, we extend this results to support a limited use of transitive closure. However, this extension is still not
powerful enough to cover many of the Alloy examples.
2 The translation to Alloy is given as an example in the Alloy distribution found at http://alloy.mit.edu

5

Types Person, Date, BirthdayBook

Relations known ⊆ BirthdayBook× Person

date ⊆ BirthdayBook× Person× Date

Functions getDate : BirthdayBook× Person → Date

Constants b1, b2 : BirthdayBook

d1, d2 : Date

p1 : Person

Facts ∀b : BirthdayBook ∀p : Person ∀d : Date date(b, p, d)⇒ known(b, p)

∀b : BirthdayBook ∀p : Person known(b, p)⇒ date(b, p, getDate(b, p))

∀b′ : BirthdayBook ∀p′ : Person ∀d′, d′′ : Date

date(b′, p′, d′) ∧ date(b′, p′, d′′)⇒ d′ = d′′

Formulas AddBirthday : (bb, bb′ : BirthdayBook, p : Person, d : Date)

¬known(bb, p) ∧ ∀p′ : Person ∀d′ : Date date(bb′, p′, d′)⇔

(p′ = p ∧ d′ = d) ∨ date(bb, p′, d′)

Assert Facts ∧ AddBirthday(b1, b2, p1, d1) ∧ date(b2, p1, d2)⇒ d1 = d2

Table 1. Constants, Facts, and Formulas used in the Birthday Book example.

• safe current and safe next operations express that for any pair of distinct trains t1 and
t2, the segment occupied by t1 does not overlap with the segment occupied by t2.

• moveOk describes under which gate conditions it is legal for a set of trains to move.
• trainMove is a physical constraint: a driver cannot choose to cross from one segment into

another segment to which it is not connected. The constraint has two parts. The first ensures
that every train that moves ends up in the next time on a segment that is a successor of
the segment it was in during the previous current time. The second ensures that the trains
that do not move actually stay on the same segments.

• gatePolicy describes the safety mechanism, enforced as a policy on a gate state. It com-
prises two constraints. The first is concerned with trains and gates; it ensures that the
segments that are predecessors of those segments that are occupied by trains should have
closed gates. In other words, a gate should be down when there is a train ahead. This is an
unnecessarily stringent policy, since it does not permit a train to move to any successor of
a segment when one successor is occupied. The second constraint is concerned with gates
alone; it ensures that between any pair of segments that have an overlapping successor, at
most, one gate can not be closed.

The Assert implies that if a move is permitted according to the rules of moveOK, and if the
trains move according to the physical constraints of trainMove, and if the safety mechanism
described by gatePolicy is enforced, then a transition from a safe state results in a state that is
also safe. In other words, safety is preserved.

The specification is not in our fragment St1, because it contains the functions

getSegment current : Train→ Segment

6

Types Train, Segment, GateState, Movers

Relations next ⊆ Segment× Segment

Overlaps ⊆ Segment× Segment

on current ⊆ Train× Segment

on next ⊆ Train× Segment

Occupied current ⊆ Segment

Occupied next ⊆ Segment

moving ⊆ Movers× Train

closed ⊆ GateState× Segment

Functions getSegment current : Train → Segment

getSegment next : Train → Segment

Constants g : GateState m : Movers

Facts –At any moment every train is on some segment

∀t : Train on current(t, getSegment current(t))

∀t : Train on next(t, getSegment next(t))

–At any moment every train is at most on one segment

∀t : Train ∀s1, s2 : Segment

(on current(t, s1) ∧ on current(t, s2))⇒ s1 = s2

∀t : Train ∀s1, s2 : Segment

(on next(t, s1) ∧ on next(t, s2))⇒ s1 = s2

–Occupied gives the set of segments occupied by trains

∀s : Segment Occupied current(s)⇒ s ∈ Im[getSegment current]

∀s : Segment Occupied next(s)⇒ s ∈ Im[getSegment next]

∀t : Train ∀s : Segment on current(t, s)⇒ Occupied current(s)

∀t : Train ∀s : Segment on next(t, s)⇒ Occupied next(s)

–Overlaps is symmetric and reflexive

∀s1, s2 : Segment Overlaps(s1, s2)⇔ Overlaps(s2, s1)

∀s : Segment Overlaps(s, s)

Table 2. Types, relations, functions, constants and facts used in the train example

and

getSegment next : Train→ Segment

and both these functions appear in formula xεIm[. . .] violating our requirements for St1 formu-
las.

7

Formulas safe current :

∀t1, t2 : Train ∀s1, s2 : Segment

(t1 6= t2 ∧ on current(t1, s1) ∧ on current(t2, s2))⇒

¬Overlaps(s1, s2)

safe next:

∀t1, t1 : Train ∀s1, s2 : Segment

(t1 6= t2 ∧ on next(t1, s1) ∧ on next(t2, s2))⇒

¬Overlaps(s1, s2)

moveOk(g : GateState ,m : Movers) :

∀s : Segment ∀t : Train

(moving(m, t) ∧ on current(t, s))⇒

¬closed(g, s)

trainMove(m : Movers)

∀ t : Train∀s1, s2 : Segment

(moving(m, t) ∧ on next(t, s2) ∧ on current(t, s1))⇒

next(s1, s2)

∧

∀t : Train ∀s : Segment

¬moving(m, t)⇒ (on next(t, s)⇔ on current(t, s))

gatePolicy(g : GateState)

∀s1, s2, s3 : Segment

next(s1, s2) ∧ Occupied current(s3) ∧ overlaps(s2, s3))⇒

closed(g, s1)

∧

∀s1, s2, s3, s4 : Segment

(s1 6= s2 ∧ next(s1, s3) ∧ next(s2, s4) ∧ overlaps(s3, s4))⇒

(closed(g, s1) ∨ closed(g, s2))

Assert (Facts ∧ safe current ∧ moveOk(g,m) ∧ trainMove(m) ∧ gatePolicy(g))⇒

safe next

Table 3. Formulas and assert used in the train example

2.4. St2 Class

2.4.1. St2 Vocabulary
St2 Vocabulary contains predicates, function symbols, the equality symbol, and atomic for-

mulas x ∈ Im[f], where f is a function symbol.

8

2.4.2. St2 Syntax
The formulas in St2 are universal formulas over a stratified vocabulary. For every function

f : A1× . . .×Ak → B that participates in a subformula xεIm[f] the following condition holds:
For every function symbol g : Ā1 × . . .× Āk̄ → B different from f :

(*)

 f and g have the same type A1 × . . .×Ak → B and

∀b : B∀a1 : A1, . . . ,∀ak : Ak [g(a1, . . . , ak) = b] ⇒ [b 6∈ Im(f) ∨ f(a1, . . . , ak) = b]

Note that (*) is a semantical requirement. When we say that a Str2 formula ψ is ”satisfiable”,
we mean that it is satisfiable in a structure that fulfills this semantical requirement (*).

In many cases formalized by us the requirement (*) above immediately follows from the
intended interpretation of functions. In the Railway safety example, some work needs to be done
to derive this requirement from the specification.

First we notice that the specification contains functions getSegment current : Train →
Segment and getSegment next : Train→ Segment. We can define level as follows: level(Train) =
1, level(Segment) = 0, level(GateState) = 0 and level(Movers) = 0.

It remains to prove that the semantic requirement holds. In the Train specification there are
getSegment current, getSegment next functions such that x ∈ Im[getSegment current] and x ∈
Im[getSegment next] participates in the formula. Therefore, it remains to show that

∀b : Segment∀a : Train [getSegment current(a) = b] ⇒

[b 6∈ Im(getSegment next) ∨ getSegment next(a) = b]
and

∀b : Segment∀a : Train [getSegment next(a) = b] ⇒
[b 6∈ Im(getSegment current) ∨ getSegment current(a) = b]

We prove a stronger requirement

∀t1, t2 : Train (t1 6= t2) ⇒ getSegment current(t1) 6= getSegment next(t2)

It is clear that the first two requirements above follow from the last requirement. Therefore it is
suffices to show that ∀t1, t2 : Train (t1 6= t2) ⇒ getSegment current(t1) 6= getSegment next(t2).

Let M be model such that

M � (Facts ∧ safe current ∧ moveOk(g,m) ∧ trainMove(m) ∧ gatePolicy(g))

Let t1 6= t2 and suppose that getSegment current(t1) = s. From the Train Facts immediately
follows that Occupied current(s). Hence from gatePolicy follows that all previous Segments of
s have a closed gate. Thus, according to moveOk, no train comes to s at the next time. But
M � safe current so s 6= getSegment current(t2). From this and from the fact that no train
comes to s at the next time, it follows that s 6= getSegment next(t2).

3. Decidability of Validity Problem

Let F1 and F2 be sets of formulas. We denote by F1 ⇒ F2 the set {ψ ⇒ ϕ : ψ ∈
F1 and ϕ ∈ F2}. The set of universal sentences is denoted by UN . The main results of this
section are stated in the following theorem.

9

Theorem 2. The validity problem for St2 ⇒ UN is decidable.

We also prove that every sentence in St2 ⇒ UN is valid iff it holds over the class of finite
models.

The section is organized as follows. First, we introduce basic definitions. Next, following
Beauquier and Slissenko [2, 3] we provide sufficient semantical conditions for the decidability
of the validity problem. Unfortunately, these semantical conditions are undecidable. However,
we show that the formulas in St2 ⇒ UN satisfy these semantical conditions.

3.1. Basic Definitions

Definition 3 (Partial Model). Let L be a many-sorted first-order language. A partial Model M ′

of L consists of the following ingredients:
• For every sort s a non-empty set D′

s, called the domain of M ′.
• For every predicate symbol pi

s of L with argument types s1, . . . , sn an assignment of an
n-place relation (pi

s)
M ′

in D′
s1
× . . .×D′

sn
.

• For every function symbol f i
s of L with type f i

s : s1 × s2 × . . . sn → s an assignment of a
partial n-place operation (f i

s)
M ′

in D′
s1
× . . .×D′

sn
→ D′

s.
• For every individual constant cis of L an assignment of an element (cis)

M ′
of D′

s.

We say that a partial model is finite if every D′
s is finite. A partial model M ′ is a model if

every function (f i
s)

M ′
: D′

s1
× . . .×D′

sn
→ D′

s is total.
The following definition strengthens the notion of the finite model property.

Definition 4 (Satisfiability with Finite Extension). A formula ψ is satisfiable with a finite exten-
sion iff for every finite partial model M ′: if M ′ can be extended to a model M of ψ, then M ′ can
be extended to a finite model M̄ of ψ.

The satisfiability with a finite extension definition was inspired by (but is quite different from)
the definition of C-satisfiable with augmentation for complexity (k, n) in [2, 3].

Definition 5 (k-Refutability). A formula ψ is k-refutable iff for every counter-model M of ψ
there exists a finite partial model M ′ such that:

• For each sort s : |D′
s| ≤ k

• M is an extension of M ′

• Any extension of M ′ to a model is a counter-model of ψ.
We say that a formula is finitely refutable if it is k-refutable for some k ∈ Nat.

Example 6 (k-Refutability). Recall the formula safe current of Railway Safety system:
safe current :

∀t1, t1 : Train ∀s1, s2 : Segment
(t1 6= t2 ∧ on current(t1, s1) ∧ on current(t2, s2))
⇒ ¬Overlaps(s1, s2)

The constraint ensures that at current moment for any pair of distinct trains t1 and t2, the
segment that t1 occupies is not a member of the set of segments that overlap with the seg-
ment occupied by t2. Let us show that safe current is 2-refutable. Suppose that safe current
has a counter-model M then there are: t1, t2 : TrainM , s1, s2 : SegmentM such that M |=
¬(on current(t1, s2)∧ on current(t2, s2)∧ t1 6= t2 ⇒ ¬Overlaps(s1, s2)). Take M ′ as the sub-
model of M with the domains TrainM ′

= {t1, t2}, SegmentM
′
= {s1, s2}. For any extension of

10

M ′ to model M̄ it still holds that M̄ |= ¬(on current(t1, s2) ∧ on current(t2, s2) ∧ t1 6= t2 ⇒
¬Overlaps(s1, s2)), so M̄ is a counter-model of safe current.

From the above example we can learn that if M is a counter-model for a k-refutable formula,
thenM contains k elements in the domain that cause a contradiction. If we take the partial model
obtained by the restriction of M to these elements, then any extension of it still contains these
elements and therefore it still is a counter-model.

In the rest of this section we prove the decidability of formulas of the form θ ⇒ ϑ, where θ is
satisfiable with finite extension and ϑ is k-refutable for some k. In addition we prove that:

• Every formula in St2 is satisfiable with finite extension.
• A formula is equivalent to a formula from UN iff the formula is k-refutable for some k.

This completes the proof of decidability of formulas of the form St2 → UN .

3.2. Sufficient Semantical Conditions for Decidability

The next lemma is a consequence of the Definitions 4 and 5.

Lemma 7 (Finite Counter-Model Property). Let ψ be a formula of the form θ ⇒ ϕ, where θ
is satisfiable with a finite extension and ϕ is finitely refutable. Then ¬ψ has the finite model
property.

Proof. Suppose that ¬ψ has model M , hence M |= θ ∧ ¬ϕ. Hence, M |= ¬ϕ. However,
ϕ is k-refutable, thereforeM has a finite partial submodelM ′ as in the definition of k-refutability.
M ′ can be extended to M and M |= θ . θ is satisfiable with a finite extension, hence M ′ can be
extended to M̄ such that M̄ is finite and M̄ |= θ. From k-refutability M̄ |= ¬ϕ.
Therefore, if ¬ψ has a model then it has a finite model. 2

Note that the lemma does not give a bound to the size of the model.

Theorem 8 (Sufficient Conditions for Decidability). Let Ffin−ref be a set of sentences in many-
sorted first-order logic that are finitely refutable and let Fsat−fin−ext be a set of sentences in
many-sorted first-order logic that are satisfiable with a finite extension. Then the validity problem
for Fsat−fin−ext ⇒ Ffin−ref is decidable. Moreover, if ψ ∈ Fsat−fin−ext ⇒ Ffin−ref , then ψ
is valid iff it is valid over the finite models.

Proof. The validity problem for many-sorted first-order logic is recursively enumerable. Accord-
ing to Lemma 7, if a sentence in this class is not valid then it has a finite counter-model. Hence,
to check whether a sentence ϕ in this class is valid we can start (1) to enumerate proofs while
looking for a proof of ϕ and (2) to enumerate all finite models while looking for a counter-model
for ϕ. Either (1) or (2) succeed. If (1) succeeds, then ϕ is valid; if (2) succeeds, then ϕ is not
valid. 2

Since Lemma 7 does not provide a bound of the size of the model, we cannot provide a
concrete complexity bound on the algorithm in Theorem 8.

Theorem 8 provides semantical conditions on a class of formulas that ensure the decidability
of the validity problem for this class. Unfortunately, these semantical conditions are undecidable.

Theorem 9. The following semantical properties of sentences are undecidable:

11

(1) For every k ∈ Nat:
Input: A formula ψ.
Question: Is ψ k-refutable?

(2) Input: A formula ψ.
Question: Is ψ finitely refutable ?

(3) Input: A formula ψ.
Question: Is ψ satisfiable with a finite extension?

Proof. (1) and (2) follow from Trakhtenbrot’s theorem [17, 4]. The Trakhtenbrot theorem states
that the set of sentences over a relational vocabulary that are valid over the finite models cannot
be separated by a recursive set from the set of unsatisfiable sentences.

(1) Let Ref k be the set of k refutable sentences over a relational vocabulary. We will show
that Ref k contains the set of unsatisfiable sentences and is disjoint from the sentences valid over
all finite models. Hence, it is not recursive.

By definition, Ref k contains the set of unsatisfiable sentences.
Assume that ψ is valid over the finite models. Let M be a counter-model of ψ and let M’ be

a partial submodel of M of size ≤ k. Let M̄ be an extension of M ′ to a model over the same
domain asM ′. Since ψ is valid over finite models, M̄ cannot be a counter-model of ψ. Therefore,
ψ cannot be k refutable.

(2) The set of finitely refutable sentences is equal to ∪kRef k. Since for every k the set Ref k

contains the set of unsatisfiable sentences and is disjoint from the set of sentences valid over the
finite models, the set ∪kRef k separates between the sentences valid over the finite models and
the set of unsatisfiable sentences, and therefore it is not recursive.

(3) The Halting Problem is the problem of deciding whether a given Turing machine accepts
the empty word. It is well known that the Halting Problem is unsolvable.

We are going to reduce the Halting Problem to the satisfiability with a finite extension prob-
lem.

Standard proofs of the undecidability of the first-order predicate logic (see e.g., [5]) provide
an algorithm that for any Turing machine m constructs a formula Run[m] that encodes a compu-
tation of Turing machine m on the empty word. This formula has the following properties:

(1) If m accepts the empty word, then Run[m] is satisfiable and all its models are finite.
(2) If m does not accepts the empty word, then Run[m] is satisfiable and all its models are

infinite.
Therefore, Run[m] is satisfiable with finite extension iff m accepts the empty word.

Indeed, assume m does not accept the empty word. Let M be a model that satisfies Run[m].
Such an M exists and it is infinite, moreover, no partial model of M can be extended to a finite
model of Run[m]. Hence, Run[m] is not satisfiable with a finite extension.

On the other hand, if m accepts the empty word and M satisfies Run[m], then M is finite and
every finite partial submodel of M can be extended to a finite model of Run[m], namely to M .
Hence, in this case Run[m] is satisfiable with a finite extension.

This accomplishes our reduction of the Halting Problem to
satisfiability with the finite extension problem. Therefore, the satisfiability with a finite exten-

sion problem is undecidable. 2

In the next two subsections we describe syntactical conditions that ensure
(1) finite refutability property.
(2) satisfiability with a finite extension property.

12

3.3. Syntactical Conditions for Decidability

The proof of the following lemma uses the preservation theorem [7] from first-order logic,
which says that a sentence ψ is equivalent to a universal formula iff any submodel of a model of
ψ is a model of ψ. The preservation theorem is valid also for the many-sorted first-order logics.

Lemma 10 (Syntactical Conditions for Finite Refutability). A sentence ψ is k-refutable for some
k iff ψ is equivalent to a universal sentence.

Proof. ⇒
Let ψ be k-refutable sentence for some k. Suppose, by contradiction, that ψ is not equivalent to
a universal sentence.

By the preservation theorem, ψ is not equivalent to a universal sentence iff there is a model
M and sub-model M ′ of M such that:

• M |= ψ
• M ′ 6|= ψ

Let M and M’ be such models.
ψ is k-refutable and M ′ 6|= ψ, Hence, M ′ contains a partial model M ′′ of size at most k such

that for any extension M̄ of M ′′ we have M̄ 6|= ψ. However, M is an extension of M ′′ and
M |= ψ - a contradiction.

⇐

Let ψ = ∀x1 . . .∀xn φ(x1, . . . , xn), where φ is quantifier-free. We will show that ψ is k-
refutable, where k is the number of terms in ψ.

Let M be a counter-model of ψ. Hence M |= ¬φ(a1, . . . , an) for some a1, . . . , an from
Dom(M). Let M ′ be the partial submodel of M over the following set

D = { the values of the terms from ψ under the assignment of ai to xi (i = 1, . . . , n)}

Let M̄ be any extension ofM ′ to a model. M̄ andM have the same interpretation for the terms
and sub-formulas from φ under the assignment of ai to xi (i = 1, . . . , n). Hence, using the fact
that M |= ¬φ(a1, . . . , an), we obtain that M̄ |= ¬φ(a1, . . . , an). Hence, M̄ is a counter-model
of ψ. Therefore for any extension M̄ of M ′ to a model M̄ is a counter-model of ψ. 2

Usually safety properties are easily formalized by universal formulas. Hence, the class
Fsat−fin−ext ⇒ UN is appropriate for verification of safety properties and has a decidable
validity problem.

The next theorem is our main technical theorem.

Theorem 11. Every St2 formula is satisfiable with a finite extension.

Proof. Assume that a formula ψ ∈ St2 is satisfiable in M and that M ′ is a finite partial sub-
model of M .

First, we extend M ′ to a finite partial sub-model M ′′ of M such that Im[f] has a “correct”
interpretation. Assume that the levels of types in Σ are in the set {0, . . . ,m}.

13

Let M0 = M ′. For i = 0, . . . ,m we define Di ,Ni and Mi+1 as follows. Let Di be the set of
elements in Mi of the types at level i such that b ∈ Di iff M |= b ∈ Im[f] and there is no tuple
ā ∈Mi with M |= f(ā) = b.

Now, for every b ∈ Di choose ā ∈ M such that M |= f(ā) = b. Observe that each element
in ā has a type at level > i. Let Ni be the set of all chosen elements (for all elements in Di and
all function symbols in Σ). Let Mi+1 be the partial sub-model of M over Dom(Mi) ∪Ni.

It is not difficult to show that Mi+1 is a finite partial submodel of M and that for every
b ∈ Dom(Mi) if B is the type of b and the level of B is at most i, then there is ā ∈ Mi+1 such
that M |= f(ā) = b iff there is ā′ ∈Mi+1 such that Mi+1 |= f(ā′) = b.

In particular, for every b ∈ Dom(Mm+1) if M |= b ∈ Im[f], then there is a tuple ā ∈
Dom(Mm+1) such that Mm+1 |= f(ā) = b.

Next, define M ′′ as Mm+1 and let Ass be the set of assignments to the variables with values
in Dom(M ′′) and let D̄ be the set of values (in M) of all terms over Σ under these assignments.
The set D̄ is finite, because our vocabulary is stratified and M ′′ is finite. Let M̄ be the partial
submodel of M over the domain D̄. From the definition of M̄ , it follows that M̄ is a submodel
of M , i.e., all functional symbols are interpreted by total functions.

It remains to be shown that the interpretations of Im[f] in M and M̄ agree. For this, we need
the semantic requirement of St2. Let b ∈ Dom(M̄) and suppose that M |= b ∈ Im[f]. We need
to show that there is a tuple ā ∈ Dom(M̄) such that M̄ |= f(ā) = b. If b ∈ Dom(Mm+1), it
follows from the previous assumption. If b 6∈ Dom(Mm+1), then M |= b = g(ā) for some g
and ā ∈ Dom(M̄). From the semantic requirement, g and f have the same type, therefore f(ā)
is defined. Hence, from the semantic requirement and from the fact that M |= g(ā) = b and the
fact that M |= b ∈ Im[f] it follows that M |= f(ā) = b. Hence, M̄ |= f(ā) = b. 2

Finally, Theorem 2 is an immediate consequence of Theorem 8, Lemma 10 and Theorem 11.

3.4. Strong Satisfiability with Finite Extension

From the proof of Theorem 11 we learn that M̄ is a submodel of M. We formalize this property
in the following definition.

Definition 12 (Strong Satisfiability with Finite Extension). A formula ψ is strongly satisfiable
with a finite extension iff for every finite partial model M ′: if M ′ can be extended to a model M
of ψ, then M ′ can be extended to a finite model M̄ of ψ such that M̄ is a submodel of M.

Conclusion 13. The formulas from St0, St1 and St2 are strongly satisfiable with a finite exten-
sion.

3.5. Transitive Closure

Most of the Alloy specifications contain transitive closure. We partially treat transitive closure
and succeed in covering some of the Alloy specifications with transitive closure.

Definition 14 (Transitive Closure Model). Let ψ be a formula containing two binary predicates
p, tcp ⊂ T × T for some type T . A tc-model Mtc of ψ is a model such that for each assignment
z:
Mtc, z |= tcp(t, s) iff there are e1, e2, . . . , en in the domain of Mtc such that e1 = z(t) and
en = z(s) and Mtcz[x := ei, y := ei+1] |= p(x, y) for i = 1 . . . n− 1.

14

Theorem 15. Let ψ be strongly satisfiable with a finite extension. Suppose:
- ψ contains two binary predicates p, tcp ⊂ T × T for some type T .
- tcp does not appear positive in ψ.
Then ψ has the satisfiability with a finite extension property for tc-models, i.e., if M ′ is any finite
partial model of a tc-model that satisfies ψ, then M ′ can be extended to a finite tc-model that
satisfies ψ.

Proof. Let M |= ψ be a tc-model and let M ′ be a finite partial submodel of M . ψ is strongly
satisfiable with a finite extension, therefore there is a finite extension M̄ of M ′ such that M̄ |= ψ
and M̄ is a submodel of M . If M̄ is a tc-model, the proof is finished.

Suppose M̄ is not a tc-model. M̄ is a submodel of M and M is a tc-model. Let us build M̄ ′

which is the same model as M̄ except that we redeclare tcp to be the transitive closure of relation
p. From the fact that M̄ is a submodel of M follows that pM̄ ′ is a subset of pM ; therefore, for
any elements e1, e2 M 6|= tcp(e1, e2), then M̄ ′ 6|= tcp(e1, e2). From this and from the fact that
tcp can appear only negatively, it holds that M̄ ′ |= ψ, and M̄ ′ is a tc-model. 2

We succeeded in formalizing the Alloy Grandpa example [11, 12] using this theorem. We
noticed that some examples use transitive closure only for negating cycles. For example, suppose
there is a relation next and a property that says there is no sequence of elements e1, . . . , en, such
that e1 = en and next(ei, ei+1) i = 0, . . . , n − 1. The formula ¬tcnext(e1, e1) enforce the
absence of cycles and it contains only the negative occurrence of the transitive closure.

In [10] the small model property was proven for a fragment of first-order logic with determin-
istic transitive closure. Here, deterministic transitive closure is a restriction of transitive closure
to paths that have no choices. For a binary relation E(x, y), define Ed(x, y) as follows:

Ed(x, y) := E(x, y) ∧ ∀z (E(x, z) ⇒ z = y)
That is, if vertex v has more than one outgoing E-edge, then it has no outgoing Ed edges.

Define the deterministic transitive closure of E (notation - dtcE) as the transitive closure of Ed.
Note that if a binary relation E is a graph of a partial function, i.e., for every x there is at most

one y such that E(x, y) holds, then the deterministic transitive closure of E coincides with the
transitive closure of E.

Theorem 16. Let T be a type and let F ⊆ St2 be the set of formulas that fulfils the following
conditions:

(1) There are two predicates p, tcp ∈ T × T .
(2) Every predicate q different from p or tcp contains at most one argument of type T .
(3) The interpretation of p is the graph of a partial function (hence, the deterministic transitive

closure of p is the same as the transitive closure of p).
(4) There is no function with an argument in T .
(5) If T is a range of a function f then x ∈ Im[f] does not occur in formulas from F .
Then, the satisfiability problem for F is decidable.

Proof. (Sketch) The proof is similar to the proof of Theorem 4 from [10] combined with the
proof of Theorem 11. This proof does not contain any new ideas. Here is a short sketch. Let Mtc

be a tc-model of ψ ∈ F . Like in the proof of theorem Theorem 11, we can build a finite sub-
model M ′ of Mtc that satisfies ψ. All types have only a finite number of elements. Hence, we
can treat the formula like a formula over type T only. Then as for the proof of theorem Theorem
4 from [10], we can prove that M ′ can be extended to a tc-model M ′

tc that satisfies ψ (by adding
required new elements to type T). 2

15

Types Level(represents years), Module(represents courses)

Relations Level is linear ordered

next ⊆ Level× Level

Prerequisite on Modules

prereq ⊆ Module×Module

Modules to be taken concurrently

coreq ⊆ Module×Module

Modules that are incompatible

excluded ⊆ Module×Module

coreq ext ⊆ Module×Module

Functions For each module assigns its level

level : Module → Level

Constants First and last years and some modules

first, last ⊆ Level, m1, . . . , m6 ⊆ Module

Table 4. Relation, Functions, and Constants used in the university example.

3.5.1. University Example
The University example is formalized in Tables 4 and 5. At the university, the processes of

student enrollment, assessment, course transfer, and completion, as well as the slower processes
of course modification take place against a background of modules. Tables 4 and 5 show our
formalization of the University example taken from Alloy. It is clear that this example satisfies
conditions of Theorem 16. next is equal to tcnext and there is no function with an argument of
type Level and Im is not used in the formula. Hence, we can verify whether the specification is
consistent (satisfiable).

4. Some Fragments of Many-Sorted Logic

In the previous section we introduced decidable fragments of many-sorted logic. In this sec-
tion, we consider classes from first-order logic that have the finite-model property. We try to find
a way to extend these classes to many-sorted logic.

We use the notation from [6] only as the names for the five classes below. According to [6],
the following classes have the finite model property:

• [∃∗∀∗, all]= (Ramsey 1930) the class of all sentences with quantifier prefix 3 ∃∗∀∗ over
arbitrary relational vocabulary with equality.

• [∃∗∀∃∗, all]= (Ackermann 1928) the class of all sentences with quantifier prefix ∃∗∀∃∗
over an arbitrary relational vocabulary with equality.

• [∃∗, all, all]= (Gurevich 1976) the class of all sentences with quantifier prefix ∃∗ over an
arbitrary vocabulary with equality.

3 ∃∗∀∗ stands for the quantifier prefix that begins with any number of ∃ quantifiers that follows any number of ∀
quantifiers. We use regular expressions for other quantifier prefixes.

16

facts Next is linear order

∀l : Level ¬next(last, l)∧

[∀l1, l2 : Level l1 = l2 ∨ ∀ elem : Level [∀ l1, l2 : Level (next(elem, l1)∧

next(elem, l2))⇒ l1 = l2 ∧ ¬tcnext(elem, elem)]]∧

∀ l : Level tcnext(first, l) ∨ l = first

Module cannot exclude itself

∀m : Module ¬tcnext(m, m)

Module cannot coreq itself

∀m : Module ¬coreq(m, m)

No cycles in prerequisites

∀m : Module ¬prereq(m, m)

coreq is transitive and symmetric

∀m1, m2, m3 : Module coreq(m1, m2) ∧ coreq(m2, m3)⇒ coreq(m1, m3)

∀m1, m2 : Module coreq(m1, m2)⇔ coreq(m2, m1)

prereq must be at lower level

∀p1, p2 : Module prereq(p1, p2)⇒ tcnext(level(p1), level(p2))

coreqs must be at the same level

∀m1, m2 : Module coreq(m1, m2)⇒ level(m1) = level(m2)

there are some coreq , prereq and excluded

coreq(m1, m2) ∧ prereq(m3, m4) ∧ excluded(m5, m6)

Table 5. Facts used in the university example

• [∃∗∀, all, (1)]= (Grädel 1996) the class of all sentences with quantifier prefix ∃∗∀ over a
vocabulary that contains unary function and arbitrary predicate symbols with equality.

• FO2 (Mortimer 1975) [15] the class of all sentences over a relational vocabulary with
equality, that contain at most two distinct variables.

Below we describe a generic naive way to generalize a class of first-order formulas to many-
sorted logic. Unfortunately, finite model property and decidability are not preserved under this
generalization.

Let Q1 . . . Qm be a quantifier prefix in many-sorted logic. Its projection on a type A is ob-
tained by erasing all quantifiers over the variables of types distinct from A. One can hope that if
for every type A the projection of the quantifier prefix on A is in a decidable class of one-sorted
logic, then this prefix is in a decidable class of many-sorted logic. However, we show that neither
the decidability nor the finite model property for a prefix of many-sorted logic is inherited from
the corresponding properties of projections.

When we take a projection of a formula to a type, in addition to removing the quantifiers over
other types, we should also modify the quantifier-free part of the formula. Here is a definition:

Definition 17 (Projection of a Formula on Type A). Let ψ be a formula of many-sorted logic in

17

the prenex normal form. Its projection on type A is denoted by ψ̄A and is obtained as follows:
(1) For each type T different from A:

(a) Eliminate all quantifiers of type T .

(b) Replace every term of type T by constant CT .

(2) Let R(t1, . . . tk) be an atomic sub-formula that contains new constants CTj (1 6 j 6 m)
at positions i1, i2, . . . im.
Introduce a new predicate name Pi1,i2,...,im of arity k −m

and replace R(t1, . . . tk)
by Pi1,i2,...,im(t1, . . . ti1−1, ti1+1, . . . ti2−1, ti2+1 . . . tim−1, tim+1 . . . tk).

(3) Let f(t1, . . . tk) be a term which contains new constants CTj (1 6 j 6 m) at positions
i1, i2, . . . im.
Introduce a new function name fi1,i2,...,im of arity k −m

and replace f(t1, . . . tk)
by fi1,i2,...,im(t1, . . . ti1−1, ti1+1, . . . ti2−1, ti2+1 . . . tim−1, tim+1 . . . tk).

For a formula ψ its projection on A is the formula ψ̄A with one type; hence, it can be consid-
ered as the first-order logic formula.

Definition 18 (Naive Extension). A set of many-sorted first-order formulas Dext is a naive ex-
tension of a set of first-order formulas D if for every ψ ∈ Dext and for every type A, it holds
that ψ̄A ∈ D.

Examples:
(1) Let ψ be ∀x1 : A ∀x2 : B ∃y1 : A ∀y2 : B p(x1, y1, x2) ∨ q(y1, y2).

Let us look at its projections onA andB. After the first two steps we obtain the formulas
∀x1 : A ∃y1 : A p(x1, y1, c

B)∨ q(y1, cB) and ∀x2 : B ∀y2 : B p(cA, cA, x2)∨ q(cA, y2).
After replacing predicates, we obtain:

∀x1 : A ∃y1 : A p3(x1, y1) ∨ q2(y1)

and
∀x2 : B ∀y2 : B p1,2(x2) ∨ q1(y2).

Both formulas are in FO2. Hence, ψ is in [FO2]ext.
(2) Let ψ be ∀x1 : A ∀x2 : B ∃y1 : A ∃y2 : B p(x1, y1, x2) ∨ p(x1, x1, y2) ∨ q(y1, x1).

Its projections on A and B are ∀x1 : A ∃y1 : A p3(x1, y1) ∨ p3(x1, x1) ∨ q(y1, x1) and
∀x2 : A ∃y2 : A p1,2(x2) ∨ p1,2(y2) ∨ q12. Since the projections are in Ackermann class,
ψ is in the extension of Ackermann class.

Note that the extension of the Ramsey class to many-sorted logic is a subclass of St0, con-
sisting of St0 formulae not containing function symbols of arity ≥ 1. Therefore it has the finite
model property and is decidable. It is easy to prove that the naive extension of Gurevich’s class
is decidable. The next two theorems state that the naive extensions of the Ackermann, Grädel,
and Mortimer classes are undecidable and therefore do not have the finite model property.

Let us recall the tilling problem.

18

Definition 19. Define a tiling problem, T = 〈T,Adjh, Adjv〉 , to consist of a finite list of tile
types, T = [t0, . . . tk], together with horizontal and vertical adjacency relations, Adjh, Adjv ⊆
T 2. Here Adjh(a, b) means that tiles of type b fit immediately to the right of tiles of type a, and
Adjv(a, b) means that tiles of type b fit one step down from those of type a. A solution to a tiling
problem is an arrangement of instances of the tiles in the grid Nat × Nat where all adjacency
relationships are respected.

It is well known that the tiling problem is undecidable. (See [4] for a thorough treatment of
tiling problems, as well as discussions of many relevant decidable and undecidable logics.).

Theorem 20 (Undecidability). The satisfiability problem is undecidable for each of the following
fragments: [∃∗∀, all, (1)]ext

= , [FO2]ext, and [∃∗∀∃∗, all]ext
= .

Proof. The proof of the next theorem shows that the tiling problem is reducible to the satisfia-
bility problem of each of the fragments [∃∗∀, all, (1)]ext

= , [FO2]ext, and [∃∗∀∃∗, all]ext
= .

Let T be a tiling problem. We are going to define a formula Ψ such that Ψ is satisfiable iff
T has a solution. Then for each of these three fragments we construct from Ψ an equisatisfiable
formula in this fragment.

The formula has two types: h (for horizontal) and v (for vertical). The vocabulary contains a
binary relational symbol Ti of type h×v for every tile type ti, and it has two functionsH : h→ h
and V : v → v.

Let Ψ be
∀x : h∀y : vΨ1 ∧ ∀x : h∀y : vΨ2 ∧ ∀x : h∀y : vΨ3

where
(1) Ψ1(x, y) is (

∧
i

(
Ti(x, y) ⇔ ¬

∨
j 6=i Tj(x, y)

)
- the pair (x, y) is tiled by exactly one tile.

(2) Ψ2(x, y) is
∧

i

[(
Ti(x, y) → ∨{j : Adjh(ti,tj)}Tj(H(x), y)

)]
- tiling respects the horizontal

adjacency relation.
(3) Ψ3 is

∧
i

[(
Ti(x, y) → ∨{j : Adjv(tj ,ti)}Tj(x, V (y))

)]
- tiling respects the vertical adja-

cency relation.
Note that Ψ is a universal formula. It is satisfiable iff it is satisfiable in a Herbrand model. It is
clear that Ψ is satisfiable in a Herbrand model iff T has a solution.

This proves that the satisfiability problem for [∀, all, (1)]ext formulas is undecidable. The
class [∀, all, (1)]ext is a subclass of [∃∗∀, all, (1)]. Hence, the satisfiability problem for [∃∗∀, all, (1)]
formulas is undecidable.

Let ψ2 be obtained from Ψ2 when H(x) is replaced by a variable z and let ψ3 be obtained
from Ψ3 when V (x) is replaced by a variable w. Let Φ2 be

∀x : h∀y : vΨ1 ∧ ∀x : h∃z : h∀y : vψ2 ∧ ∀y : v∃w : h∀x : hψ3.

Note that Ψ is the Skolem normal form of Φ2. Hence, Φ2 is satisfiable iff Ψ is satisfiable iff T
has a solution. Observe that Φ2 is in [FO2]ext. Therefore, the satisfiability problem for [FO2]ext

formulas is undecidable.
Finally, we show that the naive extension of the Ackermann class [∃∗∀∃∗, all] is undecidable.

This proof is more subtle and we start from the following formula Θ:

Θ ::= ∀x : h∃x′ : h∀y : v∃y′ : v
[(
R(x′, y) → R(x, y)

)
∧R(x, y′) ∧ ¬R(x′, y′)

]
We first show that the finite model property fails for Θ.

19

The formula expresses that for every x there is x′ such that the set {y : R(x′, y)} is a proper
subset of {y : R(x, y)}. It is almost clear that for every model M of Θ and a ∈ M the set
{b : R(a, b) holds in M} cannot be finite. Hence, the finite model property fails for Θ. Below is
a formal proof.

Assume M |= Θ. Then there is an expansion M ′ of M where the Skolem normal form Θ′ of
Θ is satisfiable, where

Θ′ is ∀x : h∀y : v
(
R(H(x), y) → R(x, y)

)
∧R(x,U(x, y)) ∧ ¬R(H(x), U(x, y))

Let x0 be an element of type h. Define xi+1 = H(xi). Let y0 be an element of type v such
that R(x0, y0) holds (such an element exists). Define yi+1 = U(xi, yi).

We will show that all xi are different and all yi are
different. Let Di be {y : R(xi, y)}. From the definition of xi, yi Di and Θ′ it follows that

(1) Di) Di+1

(2) yi+1 ∈ Di \Di+1

From (1) and (2) and the definition ofDi it follows that all xi are different and all yi are different.
Hence, Θ′ and Θ have no finite model. Note that Θ is satisfiable where h and v are interpreted
as the set of naturals and R(i, j) holds if i ≤ j.

Now we define Φ3 in the extension of the Ackermann class, which is satisfiable if T has a
solution. Φ3 is ∀x : h∃x′ : h∀y : v∃y′ : vϕ3, where ϕ3 is the conjunction of the following
quantifier-free formulas:

(1)
(
R(x′, y) → R(x, y)

)
∧R(x, y′) ∧ ¬R(x′, y′) - this conjunct is as Θ above.

(2)
∧

i

(
Ti(x, y) ⇔ ¬

∨
j 6=i Tj(x, y)

)
- the pair (x, y) is tiled by exactly one tile.

(3)
∧

i

[
Ti(x, y) → ∨{j : Adjh(ti,tj)}Tj(x′, y)

]
- tiling respects the horizontal adjacency rela-

tion.
(4)

∧
i

[
Ti(x, y) → ∨{j : Adjv(tj ,ti)}Tj(x, y′)

]
- tiling respects the vertical adjacency relation.

We claim that if Φ3 is satisfiable then T has a solution.
Let H : h → h and V : h × v → v be new functional symbols. The Skolem normal form

of Φ3 is the formula

Φ′
3 ::= ∀x : h∀y : vϕ3{H(x)/x′, V (x, y)/y′}.

Φ3 is satisfiable if Φ′
3 is satisfiable. Assume that M is a model of Φ′

3. Define xi and yi as in
the proof that Θ′ has no finite model. The same arguments show that all xi are different and all yi

are different. Define the tiling of Nat×Nat as follows: put a tile of type tk on (i, j) if Tk(xi, yj)
holds. The second conjunct ensure that every pair (x, y) is tiled by exactly one tile. The third and
fourth conjuncts ensure that the tiling respects horizontal and vertical adjacency relations.

Finally, we claim that if T has a solution then Φ3 is satisfiable. Indeed, in this case the domains
for v and h can be interpreted as Nat ; R can be interpreted as “≤” and Tk(i, j) holds if (i, j) is
tiled by tk. 2

Corollary 21 (Finite Model Property Fails). Each of the following fragments has a formula that
is satisfiable only in infinite structures: [∃∗∀, all, (1)]ext

= , [FO2]ext, and [∃∗∀∃∗, all]ext
= .

Proof. Suppose, toward contradiction, that one of the fragments has the finite model property.
Therefore, the satisfiability problem for this fragment is recursive enumerable. The validity prob-
lem is recursively enumerable for the whole many-sorted logic. Hence, the satisfiability problem
for this fragment is decidable, and this contradicts Theorem 20. 2

20

It is well known that [∀ ∀ ∃]= and [∀ ∃∀]= are undecidable classes for one-sorted first-order
logic (see [9]). The following theorem says that for many-sorted first-order logic the only unde-
cidable three quantifier prefix classes are these two one-sorted classes.

The next theorem has some theoretical interest. Unfortunately we have not found any practical
use for it. We also do not give a complete classification for many-sorted logic and even the proofs
of the following theorems are just direct proofs on the different cases and not a general method.

Theorem 22. The satisfiability problem is decidable for sentences of the formQ1Q2Q3ψ, where
ψ is a quantifier-free many-sorted formula with equality without function symbols, and Q1Q2Q3

is a quantifier prefix not of the form [∀x1 : A∀x2 : A∃x3 : A] or [∀x1 : A∃x2 : A∀x3 : A] for
some sort A.

Proof. It suffices to prove the decidability of the following quantifier prefixes. The result for the
other prefixes follows from the one-sorted logic results.

(1) [∀x1 : B∀x2 : A∃x3 : A]
(2) [∀x1 : A∀x2 : B∃x3 : A]
(3) [∀x1 : A∀x2 : A∃x3 : B]
(4) [∀x1 : A∀x2 : B∃x3 : C]
(5) [∀x1 : B∃x2 : A∀x3 : A]
(6) [∀x1 : A∃x2 : B∀x3 : A]
(7) [∀x1 : A∃x2 : B∀x3 : C]
(8) [∀x1 : A∃x2 : A∀x3 : B]
The Skolem form of (3)-(7) is in St0; therefore, the satisfiability problems for (3)-(7) are

decidable. The decidability for (8) follows from the fact that if a formula from (8) has a model,
then the formula has a model with one element of type B. So the satisfiability of [∀x1 : A∃x2 :
A∀x3 : B] is equivalent to the satisfiability of [∀x1 : A∃x2 : A], which is decidable [6]. The
decidability for (1) and (2) is similar to (8). 2

The following theorem gives a classification of many-sorted first-order logic with four quan-
tifiers except for the case [∀x1 : A∀y2 : B∃x2 : A∃y2 : B]. It is still an open question whether
the satisfiability problem for this fragment is decidable or undecidable.

Theorem 23. The satisfiability problem for sentences of the form Q1Q2Q3Q4ψ, where ψ is a
quantifier-free many-sorted formula with equality without function symbols andQi is a quantifier
prefix [∀x : A] or [∃x : A] for some sort A, is as follows:

(1) When all quantifiers are over the same sort, this is a problem of one-sorted logic.
(2) When there are three quantifiers with the same type, only the one-sorted cases are unde-

cidable, i.e., there is a pattern like [∀ ∀ ∃]= or [∀ ∃∀]= over the same type.
(3) When there are two quantifiers with the same type and two quantifiers with different types,

the satisfiability problem is decidable.
(4) When there are two quantifiers with one type and two quantifiers with another type, then

(a) [∃x2 : A∃y2 : B∀x1 : A∀y1 : B] is decidable.
(b) [∃x2 : A∀x1 : A∃y2 : B∀y1 : B] is decidable.
(c) [∃y2 : B∀x1 : A∃x2 : A∀y1 : B] is decidable.
(d) [∃x2 : A∀x1 : A∀y1 : B∃y2 : B] is decidable.
(e) [∃y2 : B∀x1 : A∀y1 : B∃x2 : A] is decidable.
(f) [∀x1 : A∃x2 : A∃y2 : B∀y1 : B] is decidable.

21

(g) [∀x1 : A∃y2 : B∀y1 : B∃x2 : A] is decidable.
(h) [∀x1 : A∃x2 : A∀y1 : B∃y2 : B] is undecidable.

Proof. 1: Is trivial.
2:
Suppose that three quantifiers are over type A and one quantifier is over type B. There are two
cases: (a) the quantifier of type B is universal (b) the quantifier of type B is existential. If (a), then
ψ has a model iff ψ has a model with one element of type B. Therefore, the universal quantifier of
type B can be eliminated. From one-sorted results it is known that a formula with three quantifiers
is undecidable iff there is a pattern like [∀ ∀ ∃]= or [∀ ∃∀]=. If (b), then let ψ̄ be the Skolem form
of ψ. If ψ̄ contains no function from A to A, then ψ̄ is in St0 and therefore is decidable. If ψ̄
does not contain a pattern like [∀ ∀ ∃]= or [∀ ∃∀]= over sort A but contains a function from A to
A, then there is only one universal quantifier over type A and all other quantifiers are existential.
Hence, ψ̄ is decidable from the one-sorted results.
3:
Suppose that two quantifiers are over type A and two quantifiers are over types B and C. If one of
the quantifiers over B or C is universal, then it can be eliminated, because ψ has a model iff ψ has
a model with one element of one of these types. Therefore, without loss of generality, we assume
that the two quantifiers over B and C are existential. If the two quantifiers over A are universal,
then the Skolem form of ψ is in St0 and is therefore decidable. If one of the quantifiers over A is
existential, then ψ is decidable from one-sorted results.
4:
The Skolem forms of 4a and 4b are in St0 and are therefore decidable.
For case 4c we can eliminate ∀y1 : B because ψ has a model iff ψ has a model with one element
of type B. Hence, the decidability follows from the one-sorted results.
Cases 4d, 4e, 4f, and 4g are similar to case 4c. In Theorem 20, we already proved that case 4h is
undecidable . 2

5. Related Works

Lee Momtahan [14] proves the finite model property and decidability for a language that is a
subset of Alloy. This language deals only with quantifies-free formulas. Even the birthday book
example cannot be fully formalized in this language.

Fontaine and Gribomont [8] introduced a quantifier elimination procedure based on an en-
hanced Herbrand Theorem. Their results imply the decidability of a fragment of many-sorted
logic which is similar to our St0. Moreover, they proved that this fragment is decidable even in
the case when for a type at level zero an interpretation is provided by a structure with decid-
able quantifier-free theory. They succeeded in formalizing in this fragment generalized railroad
crossing and parameterized Burns algorithm.

Shuvendu Lahiri and Shaz Qadeer [13] introduce a new logic interpreted over a finite partially
ordered set D of sorts. The aim of [13] and our work is to find decidable logics useful for verifi-
cation. Both the logic of [13] and the logics considered in our work use a stratified vocabulary.
Shuvendu Lahiri and Shaz Qadeer [13] logic uses the pre-image of functions, while we use the
image of functions. We can easily translate the pre-image into our logic.

The formula ∀x ∈ f−1(t).ψ(x) with the pre-image f−1 is equivalent to the formula ∀x :
T.f(x) = t ⇒ ψ(x) without any pre-image. Hence, the pre-image can be eliminated without
complicating the quantifier structure of the formula. However the elimination of the image is not

22

so easy. The formula ∀x : T.x ∈ Im[f] can be translated to an equivalent formula ∀x : T∃y :
T ′.f(y) = x. However, the translation is not in the fragment considered at [13] for two reasons:
(1) formulas in [13] do not contains alternation of quantifiers (2) they use only bonded quantifiers
of the form ∀x ∈ S, where S is a set term in their language. Moreover, it is impossible to express
unbounded quantifier ∀x : T.α in their logic. Some additional differences follow:

(1) In our logic, all types are uninterpreted. In [13], logic allows using the type of Nat with the
standard interpretation for < and +.

(2) In [13] there are no relation symbols, except <. Because of the restriction of using only
the bonded quantifiers, it seems that they cannot simulate relations. We have not even
succeeded in formulating our simplest example, Birthday, in their logic.

(3) The transitive closure is central to the logic of [13]. Our use of the transitive closure is an
adaptation of other results to a typed fragment.

(4) The complexity of the satisfiability problem for the logic considered in [13] is in NP.
We have not analyzed the complexity of our fragments. For St1 ⇒ Un formulas, we can
show that if a formula has a counter-model then it has a counter-model of the exponential
size. Therefore, the non-validity problem is in NEXPTIME. However, for St2 ⇒ Un, it is
impossible to provide a complexity bound, because it uses a semantical requirement.

6. Conclusion

In this paper we initiated a systematic study of fragments of many-sorted logic, which are
decidable, have the finite model property and have potential for practical use. To the best of
our knowledge, the idea of looking at this problem in a systematic way has not been explored
previously, despite the well-known complete classification in the one-sorted case, presented in
the book by Boerger, Graedel, and Gurevich [6].

We presented a number of decidable fragments of many-sorted first-order logic. The first
one, St0, is based on a stratified vocabulary. The stratification property guarantees that only a
finite number of terms can be built with a given finite set of variables. As a result, the Herbrand
universe is finite and the small model property holds. Moreover, a stronger property named “the
satisfiability with a finite extension property” holds.

Subsequently, we extended the class St0 to class St1 and then to St2, and proved that these
classes also have the satisfiability with a finite extension property (and therefore, the finite model
property). The added expressive power of St2 is the ability to test whether an element is in the
image of a function. Even though this particular extension may seem less natural from a syntactic
viewpoint, it is very useful in many formalizations.

We provided sufficient semantical conditions for decidability. As a consequence, we obtained
that for sentences of the form ψ ⇒ ϕ, where ψ ∈ St2 and ϕ is universal, the validity problem is
decidable. To illustrate the usefulness of the fragment, we formalized in it many examples from
Alloy.

We extended our results to logic that allows restricted use of the transitive closure. We suc-
ceeded in formalizing some of Alloy specifications by formulas of this logic; however, the vast
majority of Alloy examples that contain the transitive closure are not covered by this fragment.
Future work is needed to evaluate its usefulness and to find its decidable extensions.

Finally, we looked at classes corresponding to decidable classes (or classes with the finite-
model property) of first-order logic. We observed that just requiring the decidability of projec-
tions of the quantifier prefix for each type individually is not a sufficient condition for the de-
cidability (respectively, the finite-model property). Future work is needed to carry out complete
classification for many-sorted logic.

23

We plan to consider a less restricted use of the transitive closure which plays a very important
role in numerous practical specifications. Another topic to be considered is the extension of
our result to cases where some of the types and functions are interpreted. The third direction
is evaluating the practical usefulness of our methods. Our decidability results do not provide
concrete complexity bounds. We have not yet implemented decision procedures for our decidable
classes.

Acknowledgements

We thank Tal Lev-Ami and Greta Yorsh for their insightful comments. We are also grateful to
the anonymous referees for pointing out [8, 13] and for their numerous suggestions that improved
this paper.

References

[1] A. Abadi, A. Rabinovich and M. Sagiv. Decidable Fragments of Many-Sorted Logic. In
LPAR 2007, Springer LNCS 4790, 17-31, 2007.

[2] D. Beauquier and A. Slissenko. Decidable verification for reducible timed automata speci-
fied in a first order logic with time. Theoretical Computer Science, 275:347–388, 2002.

[3] D. Beauquier and A. Slissenko. A first order logic for specification of timed algorithms:
Basic properties and a decidable class. Annals of Pure and Applied Logic, 113:13–52, 2002.

[4] E. Boerger, E. Graedel, and Y. Gurevich. The Classical Decision Problem. Springer-Verlag,
1996.

[5] G. Boolos and R. Jeffrey. Computability and Logic. Cambridge University Press, 2nd
edition, 1980.

[6] E. Borger, E. Gradel, and Y. Gurevich. The Classical Decision Problem. Springer-Verlag,
1997.

[7] C. C. Chang and H. Jerome Keisler. Model Theory, volume 73 of Studies in Logic and the
Foundations of Mathematics. North-Holland, Netherlands, 1973.

[8] P. Fontaine and E. P. Gribomont. Decidability of invariant validation for parameterized
systems. Tools and Algorithms for Construction and Analysis of Systems (TACAS). pages
97–112, 2003. Lecture Notes in Computer Science. Springer-Verlag.

[9] W.D. Goldfarb. The unsolvability of the godel class with identity. The Journal of Symbolic
Logic, 49 , Number 4:1237–1252, 1984.

[10] N. Immerman, A. Rabinovich, T. Reps, M. Sagiv, and G. Yorsh. The boundary between
decidability and undecidability for transitive-closure logics. In Computer Science Logic
(CSL, pages 160–174, 2004.

[11] D. Jackson. Alloy: a lightweight object modelling notation. ACM Trans. Softw. Eng .
Methodol, 11(2):256–290, 2002.

[12] D. Jackson. Micromodels of software:lightweight modelling and analysis with alloy. Tech-
nical report, MIT Lab for Computer Science, 2002.

[13] Shuvendu K. Lahiri and Shaz Qadeer. Back to the future: revisiting precise program verifi-
cation using smt solvers. In POPL, pages 171–182, 2008.

[14] Lee Momtahan. Towards a small model theorem for data independent systems in alloy.
Electronic Notes in Theoretical Computer Science, 128(6):37–52, May 2005.

[15] M. Mortimer. On languages with two variables. Zeitschr.f.math.Logik u.Grundlagen
d.Math, pages 135–140, 1975.

24

[16] J.M. Spivey. The Z notation:a reference manual. Prentice-Hall, 1992.
[17] B. A. Trakhtenbrot. The impossibility of an algorithm for the decidability problem on finite

classes. Doklady AN SSR, 70(4):569–572, 1950.

25

